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We use an Evans-Gillan driving force /~, together with isokinetic and 
isoenergetic constraint forces U:, to drive steady heat currents in periodic 
systems of 4 and 32 hard spheres. The additional driving and constraint forces 
produce curved trajectories as well as additional streaming and collisional con- 
tributions to the momentum and energy fluxes. Here we develop an analytic 
treatment of the collisions so that the simulation becomes approximately ten 
times faster than our previous numerical treatment. At low field strengths 2, for 
2a less than 0.4, where cr is the hard-sphere diameter, the 32-sphere conductivity 
is consistent with Alder, Gass, and Wainwright's 108-sphere value. At higher 
field strengths the conductivity varies roughly as 21/2 , in parallel with the 
logarithmic dependence found previously for three hard disks. 

KEY WORDS:  Nonequilibrium molecular dynamics; heat conductivity; hard 
spheres. 

1. I N T R O D U C T I O N  

Boltzmann formulated the atomistic basis for nonequilibrium flows of 
mass, momentum, and energy, described by the linear laws of Fick, New- 
ton, and Fourier. (1) A general method for expressing the corresponding 
transport coefficients, the diffusion, viscosity, and heat conductivity, in 
terms of equilibrium current, stress, and heat current autocorrelation time 
integrals was developed by Green and Kubo. Alder and Wainwright 
applied this linear response formalism to the simplest prototypical atomic 
model, hard spheres, during the period from 1955 to 1970. (2,3) 
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A major accomplishment of the computational effort during this 
period was establishing the form of the equilibrium equation of state 
characterizing the number dependence of the pressure (2'4) and establishing 
the location of the fluid-solid phase transition. (5) This work led to a fairly 
reliable method for calculating fluid-phase equilibrium properties by 
perturbation theory based on the hard-sphere results. (6) Nonequilibrium 
progress has been more difficult, primarily due to the lack of a useful per- 
turbation theory. The Green-Kubo method provided a route to the linear 
transport coefficients using equilibrium molecular dynamics. Because 
the calculations were time-consuming, being based on the analysis of 
fluctuations, and showed considerable number dependence, there was 
motivation to develop alternative approaches37'8) 

New methods began to be developed for treating nonlinear transport, 
using driving forces and constraint forces to produce fluxes under steady- 
state, far-from-equilibrium conditions. By 1982 Evans and Gillan had 
shown that heat flow, the transport property studied here, could be 
induced by using a driving force depending on individual particle con- 
tributions to the energy and pressure tensor. (9'I~ Their idea has been 
applied to both soft (11'12) and hard (13) spheres. Heat flow requires a system 
of three or more particles and is intrinsically more complex than diffusive 
or viscous flows, for which two particles suffice./141 Here we apply the 
Evans-Gillan idea to hard spheres. 

The present work is organized as follows. In Section 2 we give a brief 
resume of the Evans-Gillan recipe for the determination of the heat con- 
ductivity. In Section 3 we describe an analytic method which makes the 
collisional calculation more efficient than the purely numerical approach 
followed previously, (13) particularly for dense fluids and for solids. Conduc- 
tivity results based on this analytic approach are listed in Section4. 
Section 5 is a discussion. 

2. B A S I C  E Q U A T I O N S  

In the interest of generality and clarity, we first consider a continuous, 
pairwise-additive, spherically symmetric interaction potential. We consider 
later the hard-sphere limit. The periodic system, which can be fluid or 
solid, with volume V, contains N D-dimensional particles of mass m. The 
total momentum of the system is zero. Particle i, located at ri, has momen- 
tum Pi. The total energy E is a sum of kinetic and potential contributions 
K and ~b: 

E = K +  �9 = ~ p2/(Zm) + Z ~, (bo(ru) 
(1) 

rij=ri--rj ,  rij =- I%[ 
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The single sum runs over all N particles. The double sum includes all pairs 
of particles. Three types of forces act on each particle i: An applied force 
F a = F~ from the potential gradient, an external driving force F~ inducing, 
on the average, a heat flow in the x direction, and a constraint force F~ 
fixing either the total energy E or the kinetic energy K: 

p~ = dp/dt = Fi + F~ + F~, 1 ~< i ~< N 

eli : r ij/r ij 

Fi  ~ ~ Vij = - - 2  ( d r  eij 
J J 

- APex i V), x, y,... F~ = 2(6~x AEi + , c~ = 

F ~ -  --(EPi or -~xP i  

(2) 

AEi indicates the actual instantaneous energy for particle i, E~, minus the 
average energy per particle, E/N, at the same time: 

1 q~ij]- rE~N] AEi = Ip2/(2m) + ~ ~, (3) 

The sum runs over all particles j interacting with i. Similarly, the 
individual-particle fluctuations in potential pressure-tensor components, 

APex,, = P~x,,- [P~x/N] (4) 

follow from the definition of the instantaneous pressure tensor: 

K 0~ q P ~ V = P ~ V + P ~ V - ~ , p = p J m + Z Z r = , o F e , ~ i = ~  P~e,iV (5) 

Note that only the potential part P~ of the pressure tensor contributes to 
the driving force F d. This force is constructed so as to induce a mean heat 
flux in the x direction with the resulting dissipation matching that from 
irreversible thermodynamics. (9) The instantaneous heat flux Q is given by 

1 . F0.] mQ V = ~ piE/+ Z Z ru I2  (Pi + Pj) (6) 

In the constraint force F c, the "friction" coefficient ~e or ~K is a function of 
time, but has the same value for all particles. ~ is chosen so that either the 
total energy E or the kinetic part K is a constant of motion. The two 
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choices will be called "isoenergetic" and "isokinetic," respectively. Explicit 
construction of ~ yields (~ 

~E=2QxV/(2K), ~K=~e+[~pi'Fi/(2Km)] (7) 

for the isoenergetic and isokinetic cases, respectively. One can see that for 
absent driving force (2 = 0), ~e is also vanishing. This corresponds to the 
usual Newtonian equilibrium molecular dynamics. In ~K, however, there is 
an extra term independent of 2. Thus, even for 4=0,  the isokinetic 
molecular dynamics is non-Newtonian. (13) 

Measuring the heat flux Q makes it possible to obtain the thermal 
conductivity ~ from the relation r 

Qx = ~2T (8) 

The bar means time average. T is the absolute temperature defined by the 
relation 

= �89 (9) 

where k is Boltzmann's constant. 
Equation (8) may be used for any 2 to define formally a non- 

equilibrium ~c=~c(2). To compare with linear Green-Kubo results, (3) 
however, small 2's have to be used. Equation (8) may be compared with 
Fourier's law: 

Q--- - K V T  (10) 

which likewise defines a constant ~ (linear regime) only for small tem- 
perature gradients. 

Both Qx and ~: depend on N. For N = 2, the heat flux vanishes, since 
P2 = - P l ;  compare (6). One might conjecture that K is a monotonically 
increasing function of N up to the thermodynamic limit. The form of this 
number dependence was discussed, qualitatively, in Ref. 3. 

The meaning of temperature for small systems was discussed in Ref. 15. 
We use temperature in the sense of T of that reference, generalized to 
nonequilibrium systems. Furthermore, the thermodynamic pressure in D 
dimensions is given by the usual relation 

P=~ P~JD (11) 
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3. CALCULATION METHOD 

3.1. Streaming Mot ion ( ( I ) = 0 )  

We consider soft, repulsive, spherical particles of diameter 0, with the 
interaction potential vanishing for r ~> o. If no pair of particles overlaps, 
then q~=0, and the isoenergetic and isokinetic cases coincide. The 
corresponding "streaming motion" is characterized by 

= )~ ~ px~Kj(2Krn) 
(12) 

Kf and AK~ appear, rather than the AE~ of (2) and (3), because the 
potential vanishes between collisions. The ND equations of motion are 
coupled by ~. Equations (5) and (6) are simplified: 

P~p V = ~ p~p~i/m 

mQV= Z p iKi=EpiAKi  

(13) 

(14) 

for the streaming motion~ For hard spheres / ~ = K  str and combining (9), 
(11), and (13) shows that p~trV/NkT= 1 as in the equilibrium case. 

Setting o = 0 yields the ideal gas case. Then only streaming motion 
occurs, which is in general no longer characterized by straight lines if 2 >~ 0. 
Without loss of generality, we assume 2 ~> 0 in the following. What is the 
maximum Qx that can be achieved for given N, D, and kT  when the center 
of mass is fixed? A Lagrange-multiplier calculation yields the result that 
one particle (say particle 1) moves in the positive xdirection. The rest 
move in the opposite direction: 

pi= --p~/(N-- 1), 2 <~ i <~ N 

K= �89 p~/[2m(1 - N - l ) ]  
(15) 

The corresponding heat flux is 

mQma"v= �89 - 2N-1)[m(DNkT)3/(I -- N- l ) ]  1/2 (16) 

Thus, the collisionless ideal-gas behavior may be characterized as follows: 
For small 2, Q~ increases proportional to 2, as given by (8). If 2 becomes 
very large and if the streaming motion persists for a long time, Qx tends to 
a saturation value Qmax given in (16). Accordingly, x becomes proportional 
to 1/2 for large 2. Between collisions, the streaming motion of the soft, 
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repulsive spherical particles is the same as that of an ideal gas and can be 
treated numerically without problems. The streaming motion ends when 
any pair of particles happens to touch. Without loss of generality, we 
assume a collision of particles 1 and 2 in the following. 

3.2. Collisions 

In our preliminary calculations in Ref. 13, the colliding motion was 
treated numerically, assuming potentials proportional to ( ~ -  r) for r <~ a 
and vanishing for r/> a. The equations of motion were solved for a series of 
increasing proportionality constants until the "hard-sphere limit" was 
achieved. Because ~b was continuous, the motion, pressure, and heat flux 
vector could all be calculated without trouble. The pressure and heat flux 
contributions from the collisions are not the same for isoenergetic and 
isokinetic cases. This comes from the different momentum histories during 
the collision. At the end of the collision (defined by r12 = ~r), the motions 
coincide in the two cases. This is because the extra net work performed by 
the driving force during each collision is exactly offset by the isoenergetic 
or isokinetic friction coefficient. Thus, the coordinate trajectories are the 
same in the hard-sphere limit. The numerical calculation of collisions was 
relatively slow because the momenta of all the particles varied with time. In 
the present paper, we display a theoretical treatment of collisions that 
substantially reduces this numerical work in the hard-sphere limit. Only 
two-particle collisions 1-2 have to be considered. During each collision, the 
product of force and distance greatly exceeds kT,  and the distance vector 
r12 is essentially given by flz, the vector at the beginning of collision. 
Retaining the leading terms, Eq. (2) becomes 

pi= dpi/dt = NiF~2~2 - ~pi, 1 <~ i <<. N (17) 

where e l2  = rt2/a, and F~2 = IF~2I, the magnitude of the force exerted on 
particle 1 by particle 2. We have 

N 1= 1 +�89 -1) 

N2 = -1  + �89 -- 2N-1) (18) 

N i -  -J.fc12/N , 3<~i<~N 

The terms linear in 2 come from the driving force. The general solution of 
(17) is 

pi( t) = [ l( t) ] - ' [Pi W e12N~ I~ Flz( t') I( t') dt' j 

(19) 

;o I(t) -- exp ~(t ' )dt ' ,  ~i=-p~(O), ~,2-  ~,2(0 ) 
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with zero indicating the time at the beginning of collision. This solution, 
however, can only be used if ~ is known as a function of t. The friction 
coefficients that couple the ND differential equations are given by (7) as 
follows: 

~E = F12 [1"~9c12(Pl -}- pz)]/(2Km) (20) 

~,~ = F,2[�89 + Pz) + (Pl -p2)] / (ZKm) (21) 

It is convenient to use the notation P12- P l -  P2 and s12- Pl + P2 for the 
relative and total momenta of the colliding pair. Then (17) and (18) yield 

012 = 2F12 - ~P12 (22) 

g 12 = 2x12(1 - 2N-  1) F lz - ~s 12 (23) 

Projection onto e~2 = f12/o, indicated by a prime, gives 

Pi2 = 2F12 - ~'Pi2 (24) 

~]2 = [2212(1 - 2N-1)]  F~z-  ~s;2 (25) 

where F~2 is a steep repulsive force yet to be chosen explicitly. 
The isoenergetic case is characterized by 

~e = F12[�89 
(26) 

(~7= 0) --+ (/s  - ~  = r12p'12/m) 

The isokinetic case is given by 

~ K - -  1 ~ t - F12[~2x12s12 + p'lz]/(2Km) 
(27) 

(K = 0) ~ ( K =  const) 

Thus, the isoenergetic case has been reduced to three coupled differential 
equations in the variables P]2, s]2, and K. The isokinetic case has been 
reduced to two coupled equations in the variables P]2 and s]2. Because this 
is simpler, the isokinetic case will be solved first. 

Having the solution for P]2, S]2, K means first knowing ~'. See (26) and 
(27). Then the momenta Pi during the collision can be calculated using 
(19). 

Furthermore, the instantaneous pressure and heat flux follow from (5) 
and (6): 

P~/~ V= F12 ~r~,12 ~/~,12 (28) 

1 ^ ! mQ~ V= ~F12ae~,12s12 (29) 

822/48/3-4-33 
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Generally, each collision begins with P'12 < 0 and ends with P'12 > 0. The 
turning point is given by P'12 = 0. The condition ending the collision is 

P'12 dt = 0. The isokinetic and isoenergetic cases are solved in Appendices 
A and B, respectively. For the most part, the solution is analytical. Only 
one-dimensional numerical integrals occur. 

4. C O M P U T E R  E X P E R I M E N T A L  R E S U L T S  

In Section 3 and Appendices A and B, the collisions are reduced to 
one-dimensional quadratures. The solutions were built into the existing 
computer program, (13) which can treat one-, two-, three-, and four-dimen- 
sional systems. A series of test runs showed that the reduction in computer 
time used varies with the number of particles, dimensionality, and density, 
but is typically a factor ten. For very low densities, where streaming 
motion is dominant, the gain is only about a factor of two. 

In this paper, results for hard spheres are presented. The following 
particle numbers and densities were investigated: 

(N = 4, V/Vo = 1.25), ( N =  32, V/Vo = 1.25) typical solid 

(N = 4, V/Vo = 1.80), (N = 32, V/V o = 1.80) dense fluid (30) 

( N =  4, V/Vo = 3.00) dilute fluid 

Vo is the close-packed volume N a 3 / ~ .  For each of the five series of com- 
puter experiments, (2a) ~/2 was varied between 0.0 and 2.0 in steps of 0.1. 
The starting configuration was always an fcc structure. Test runs showed 
that a steady state was achieved after a few hundred collisions in the worst 
case. For calculating thermodynamic properties, there is the possibility to 
use one long trajectory or several shorter ones with different (random) 
initial particle velocities. The second procedure samples the phase space 
more efficiently. (~6) Furthermore, calculation of statistical errors is sim- 
plified, the mean values due to the simple trajectories being the input data 
for estimating a quantity and its error. Thus, for given N, V, and 2 several 
trajectories were used. The first 500 collisions of each were thrown away, 
the consecutive 2500 collisions being utilized for calculation. More details 
are given in Table I. The quantities calculated are shown in Table II. 

Apart from the heat flux data, the results for [~tr, Z~, and 
( Z x - 1 ) / ( Z E - 1 )  are also presented, t -~tr is the average time between 
collisions and Z is the compressibility factor PV/NkT. To simplify the 
presentation of the results, all quantities are displayed in units of m, a, and 



N o n e q u i l i b r i u m  M o l e c u l a r  Dynamics  

Table  I. N u m b e r  of  Tra jec tor ies  and of  Col l is ions for  Given N,  V, 
and k As a Funct ion  of  A ~ 

881 

(20-) 1/2 Number of trajectories Number of collisions 

0.04).2 24 60,000 
0.3 20 50,000 
0.4 16 40,000 
0.5 12 30,000 
0.6-2.0 8 20,000 

a Each trajectory started from an fcc lattice with different random initial velocities. The first 
500 collisions were used for equilibration, the consecutive 2500 for calculation. 

kT. This means that the following symbols (left-hand side) should be read 
as dimensionless quantities (right-hand side): 

~ --~ )~o 

/str ~ [str(kT/m)l/Z ~ i 

O x , E ~  Ox,E(kr)  3/z ml/2aD 

(K/k) --~ (K/k)(kV/m) 1/2 0.D-1 

(31) 

with D = 3 for hard spheres. Z is already dimensionless. 
For  2 = 0  (i.e., equilibrium), it is possible to compare t -str and ZE with 

values given in Ref. 2, where the same particle numbers and densities occur. 
The check of consistency is successful, bearing in mind that in Ref. 2 the 

Table  II. Ca lcu la ted  Quant i t ies ,  in Uni ts  of  m,  a ,  and k T  ~ 

Ze 

Qx, E 
7cjk 
Kslr/k 

(z~ - 1 )/(z~ - 1 ) 

colJ coil ~,, /KE 

Average time of streaming motion (between collisions); inverse of the 
collision rate F 
Compressibility factor PE V/NkT for the isoenergetic case, calculated 
from the pressure tensor 
Average heat flux in the x direction (isoenergetic case) 
Total heat conductivity over k (isoenergetic case) 
Contribution of streaming motion to the heat conductivity 
Ratio of isokinetic to isoenergetic for the collisional part of the 
pressure 
Ratio of isokinetic to isoenergetic for the collisional part of ~c 

a See (31). 
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number of collisions was low (2000 for N = 4 ) .  For equilibrium hard 
spheres, 

ZE = 1 + 7Zl/2/(3N{StraN) 

a N = (1 - N - 1 ) ( 3 N )  m F ( 3 [ N  - 1 ])/s  - 1) (32) 

a4 = 0.8904, a32 = 0.9869 

F(m)  is the usual F-function, ( m -  1)! for positive integral values of m. In 
Ref. 2, aN (called R there) was determined experimentally. The theoretical 
explanation for this correction was given in Refs. 4 and 17. Thus, there is a 
further check of consistency: One has to compare Z e  calculated directly 
from the pressure tensor with Z e calculated indirectly via t ~tr. For small 2, 
the agreement is perfect. For higher )~ (starting at about 2 t/2 =0.7), the 
deviations become pronounced, indicating nonlinear nonequilibrium 
behavior. 
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Fig. 1. Var ia t ion of the ha rd - sphere  collision rate, relative to the zero-field limit, with field 
s t rength.  Resul ts  for V/V  o = 1.25, 1.80, and  3.00 are indicated with solid, dashed ,  and  dot ted  
lines, respectively. 
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/ T h e  detailed results of the computer experiments are exhibited in 
Appendix C, Tables III-VII. To see the main features, it is more convenient 
to look at a different representation, Figs. 1-5. Figure 1 shows F =  1/t str, 
Fig. 2 displays ZE. Both quantities do not depend significantly on 2 up to 
/~1/2 =0.6. Thus, for convenience, F and ZE are divided by their weighted 
mean (0~<2 m~<0.6), F* and Z*, respectively. For higher 2, there are 
systematic deviations that are not easy to explain theoretically. 

The ratio (Z x -  1) /(Ze-1)-p~176 ~176 has been included for the - -  K E 

following reason. In Appendix D, it is shown that for 2 = 0 this quantity is 

(ZK--1)/(ZE--1)=I--[D(N--1)] -1, D>~I, N>~2 (33) 
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32 

Fig. 2. Variation of the isoenergetic compressibility factor, relative to the zero-field limit, 
with field strength. Results for V/Vo = 1.25, 1.80, and 3.00 are indicated with solid, dashed, 
and dotted lines, respectively. 
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for N D-dimensional hard spheres, independent of density. The three- 
dimensional values for N = 4  and N =  32 are 1.125 and 1.011, respectively. 
Figure 3 confirms this result for small 4. Compare Tables III-VIII. 

For D = 1 and N = 2, ( Z u -  1 ) / (Ze-  1 ) becomes infinite. On the other 
hand, (Z K -  1 ) / (ZE-  1) converges to 1 in the thermodynamic limit. This is 
one feature of a general observation: For hard spheres, the isoenergetic and 
isokinetic cases both converge to the same thermodynamic limit. This can 
easily be seen by the following argument: the "typical" potential energy ~b12 
during the collision (in the case of very steep soft potentials) is essentially 
kT, independent of N. Thus, the relative contribution of ~12 to the total 
energy E becomes smaller as N increases: 

E = K + ~ I  2 (34) 

K is proportional to N. The restrictions of constant total energy and 
constant kinetic energy become identical if N--, oo. 

1.10 

1.05 

1.00 

Col l is iona l  PK/PE 

/ 
/ / / 

J 

/ /  

N = 32 , f  
- 

I I I _ _  

0 1 2 
X1/2 

Fig. 3. Var ia t ion  of the col l is ional  par ts  of the pressure with field s trength.  Resul ts  for 
V/Vo = 1.25, 1.80, and  3.00 are indica ted  wi th  solid, dashed,  and  do t ted  lines, respectively. 



N o n e q u i l i b r i u m  M o l e c u l a r  Dynamics  885 

Now we turn to the heat flux. Because Qx, E becomes proportional to 2 
for small 2, while its fluctuations do not diminish, the statistical accuracy of 
this quantity becomes poor. This is why we chose to examine more 
collisions for small 2, as shown in Table I. For  21/2 = 0.1, however, the heat 
flux data were meaningless, with estimated errors as large as the mean 
value itself. From heat flux, the corresponding heat conductivities can be 
calculated using (8). The values of •E and its streaming part ~c S~r are 
included in Tables III-VIII. Compare Fig. 4. These quantities are highly 
correlated. Again, no significant dependence on 2 can be detected up to 
21/2=0.6. Thus, one can conclude that linear heat transport is 
approximately valid in this region. We have used the weighted mean of the 
results for 0.2 ~< 21/2<~ 0.6 as estimates for the equilibrium linear heat con- 
ductivity. Table VIII shows these results together with the weighted means 

I -  

E 
v 

r 
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0 
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Fig. 4. Variation of conductivity with field strength. Both the total conductivity and the 
streaming contribution (indicated by S) are shown. Results for V/Vo = 1.25, 1.80, and 3.00 are 
indicated with solid, dashed, and dotted lines, respectively. 
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of {str and Ze  for 0.0 ~< 21/2 ~< 0.6. AS expected, ~ce for N = 4 is smaller than 
for N =  32. A comparison with Ref. 3 is also possible, where KE was 
calculated using the Green-Kubo equilibrium autocorrelation approach: 

V/Vo=I.8, N =  108: xE/k = 6.94_ 0.14 
(35) 

V/Vo = 3.0, N = 108: ~ce/k = 1.92 + 0.02 

One can see that for V/Vo = 1.8 the result of Ref. 3 and xe/k = 6.79 + 0.21 
(Table VIII, N =  32) are consistent. Thus, the N dependence is small for N 
greater than 32. For comparison, the Enskog Ke/k (V/Vo=I.8, ther- 
modynamic limit) is 6.74, (3) which is close to the above values. 

The results of the case V/V o = 1.8, N = 32, are also presented in the 
figure. Compare Table VIII. One can see that the extrapolation to 
equilibrium by averaging the quantities for 21/2 ~0.6 makes sense; cf. the 
horizontal bars. As to Z E, at 21/2= 0.7, there seems to be a sharp transition 
from horizontal behavior to linear dependence on 21/2. The anticorrelation 
of Z E and t -str can be understood from Eq. (32), which is approximately 
valid also in the nonequilibrium case. Furthermore, one can see that the 
heat conductivity ~ce and its streaming part /s are highly correlated. The 
numbers in brackets refer to the basis 21/2 ~ 0.7 instead of ,~1/2 ~< 0.6. Thus, 
we are on the safe side when considering averages for 2 ~/2 ~<0.6. More 
complicated fits would be too flexible. 

While  fstr and Ze are more accurate close to equilibrium, the opposite 
is the case for ~:e and Kstr; see Tables Ill-VII. Is the jumpiness for small 2 
beyond statistical expectation? The error in Tables III-VIII denotes stan- 
dard deviation. Thus, one expects that roughly two-thirds of the error bars 
of fstr, Z E  ' ~:E/k, and /r (for 21/2 ~<0.6) cross the appropriate weighted 
means (Table VIII). Averaging the results of all cases (30) (Tables I l l -VII)  
gives the following fractions: 

t-str: 0.83 (0.75), Ze:  0.63 (0.63) 
(36) 

~ce/k: 0.72 (0.67), xstr/k: 0.84 (0.77) 

Now we consider the ratio of the collisional parts of the heat conductivities 

coil coil lg K / t ( ,  E = (t~2 K - -  K, s t r ) / ( K E -  ~str) (37) 

for small 2. In parallel to the pressure result (see Appendix D), the conduc- 
tivity ratio seems to be nearly independent of density. See Fig. 5 and 
Tables III-VII. We could not find a limiting (2 = 0) formula like (33). In 
that limit the numerator and denominator of Eq. (37) both vanish. 

Finally, consider the heat conductivity for 21/2 greater than 0.6. After a 
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Fig. 5. Ratio of the isokinetic to isoenergetic collisional parts of the conductivity as a 
function of field strength. Results for V/V o = 1.25, 1.80, and 3.00 are indicated with solid, 
dashed, and dotted lines, respectively. 

transient region, K e and ~c ~tr become approximately linearly decreasing 
functions of 21/2. This behavior may be compared with Ref. 13, where a 
system of three hard disks was investigated. There, it turned out that ~c e 
a n d  K str varied linearly with In 2. In that case no transient region or "linear 
regime" could be detected. Obviously, the 2 values where these transitions 
occur are too small to observe in two dimensions, at least with the 
accuracy obtained in Ref. 13. The three-dimensional case is more favorable. 
It is indeed possible to get heat conductivities for hard spheres using our 
method in a reasonable amount of computer time. 

5. CONCLUSION 

The pressures found, in both the fluid and solid phases, agree nicely 
with those of Alder and Wainwright (z) for field strengths below 0.4. In this 



888 Kratky and H o o v e r  

region there is negligible coupling, less than 1%, between the heat flux and 
the pressure tensor. 

For the conductivity we find, as suggested by Alder etal., ~3~ con- 
siderable number dependence. There is roughly a factor of three between 
the four-sphere results and the 32-sphere results. The fluid data suggest a 
conductivity lying near, possibly somewhat below, the Green-Kubo value 
found for 108 and 500 particles in a dense fluid. 

This considerable number dependence suggests that simple few-particle 
models based on the dense-fluid, cell-model picture will not be particularly 
useful for thermal conductivity. This is a little surprising in view of the 
great success of an Einstein-like model for conductivity in generating a 
good corresponding-states account of conductivities for a wide range of 
force laws over the entire span of dense-fluid conditions. ~s~ 

The uncertainty in the old Green-Kubo results was 2% after 2 million 
collisions per particle (V/Vo=I.80,  N=108). Our uncertainty of 
extrapolated ~c e (based on 200,000 collisions in total) is 3% for N =  32. 
This is only a relatively small improvement over the estimate based on 
statistical fluctuations proportional to the square root of the number of 
collisions studied. The relatively complicated dependence of the results on 
field strength suggests that the external field method is advantageous only 
if it is desired to know the nonlinear conductivity. The linear conductivity 
can as easily be found using the Green-Kubo technique, which has the 
added advantage of providing the other transport coefficients and their 
frequency dependence simultaneously. 

The nonlinear conductivity is interesting. Both the four-sphere and 
32-sphere results are approximately linear in •1/2 for larger fields. This 
dependence can be thought of as arising from a diffusion process or from a 
scattering process. In the former case the diffusion equation suggests a 
falloff in correlation as time 3/2 in three dimensions, leading to a frequency 
dependence or field dependence of order co ~/2 or 21/2. Alternatively, from 
the standpoint of scattering of phonons, the Debye-Waller scattering, 
proportional to the average value of o) 2, and combined with a density of 
states proportional to c02 leads also to a square-root dependence. 

The nonlinear conductivities found here, increasing with field in the 
solid and dense fluid phases, could be extended and made more precise 
were there data available from other simulations for comparison. There 
appear to be no difficulties in extending the nonequilibrium techniques to 
hard spheres. The hard-sphere model is also suited to shock wave 
simulation, the area in which nonlinear effects are most easily generated 
and studied. 
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A P P E N D I X  A. ISOKINET IC  H A R D - S P H E R E  COLLIS IONS 

The colliding motion begins at time 0 and ends at time te with r12 ~-a  
in both cases. We assume that the force during the penetration of the 
spheres is 

F~2 = F~2 (A1) 

where F is an arbitrarily high, but finite, constant. Then, (24), (25), and 
(27) may be combined to give a single differential equation for ~/~: 

~;c = F2[( 1 + �89 - y2 "~K 

3=�89 2N- l )  2 2 - -  2 X I 2 ~ 0  
(A2) 

For the duration of each collision 6 is fixed, and gives the influence of the 
driving force F~ on the collision. It is convenient to replace the time 
variables ( and t by impulse variables XK and t: 

X K - - ~ n / F ,  ~ F t  (A3) 

During the collision, 0 < ~ < %. In the hard-sphere limit, as the collision 
time te tends to zero, the absolute value of (;c becomes arbitrarily large, but 
% and (;c remain nonvanishing and finite, respectively. We will see that 
similar considerations hold for pressure and heat flux. Using the definitions 
(A3), we find that Eq. (A2) becomes 

dXK/d~ = (d~K/d t ) /F  2 = q2 _ X2x 

q = [( 1 + �89 1/2 
(A4) 

From the definition of q and XK it follows that 

- q  <~ f (K < q (A5) 

with X x = - X ; c ( t = O ) .  If )(K> --q, the solution of (A4) is 

Xtc = q[1 - 2/(1 + ~ exp 2qv)]  

s - (q + f ( ~ ) / ( q  --  f(K), 0 < s < 
(A6) 

Xzc increases monotonically with time. Because we know the friction, 
Eqs. (17) can be solved separately; see (19). The result is 
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pi(v) : [ I('c) ] -  l [ Pi + e12Ni fo I(Z') dz '] 

I(z) = [s exp(qz) + e x p ( - q z ) ] / ( 1  + s (A7) 

OI(z') dz' = [-1 - (2 + s exp(q~) - exp( -qz)]/[q(1 + s 

Now it has to be determined when the collision ends. The condition 
corresponding to r'12(%)= rlz(Ze)= o is 

~o~ P'12(z) d'c = Fm[ r'12(Ze) - ~ ] = 0 

From (A7), this can be written as 

In 1(%) = -d ,  tan -1 db(r~) 

aa ~ [1 - O + �89 + ~2) qp'12]/f21/2 

db(%) -- (2m[exp(qze) -- 1 ] / [  1 + s exp(qz~)] 

(A8) 

(A9) 

As usual, /~'12-:p'12('c=0). The trivial solution of (A9) with z = 0  
corresponds to the beginning of the collision. There is a second unique 
solution with 0 < z~ < ~ determining the end of the collision. This solution 
has to be found numerically. Then, the pressure (28) and heat flux (29) 
integrals yield 

fcon P~ V dt = s~,12~3,12t , ,  (A10) 

fcol mQ~Vdt=�89 dt 

= �89 + L)/(qLm)] 

x [g'12--�89 - 2 N  -1)/~'~z] tan * db(tr (A l l )  

For  db(ze), see (A9). Combination of (27), (29), and (AS) results in 

fconr fool mQxVdt (A12) 

Thus, the complete solution for )(K > - q  has been found. If Xtr is equal to 
- q ,  a limiting case of zero probability, Ze diverges. The isokinetic case is 
not well-posed then. 



Nonequilibrium Molecular Dynamics 891 

APPENDIX B. 

The three coupled equations for the isoenergetic case are 

P'12 = F~2 I-2 - 2212 s'12 p'a2/(4Km)] (B1) 

i'12 = F~22~lz1-(1 - 2 N - ' )  - ((s'12)2/(4Km))] (B2) 

/s = F12 P'~2 (B3) 

ISOENERGETIC H A R D - S P H E R E  COLLISIONS 

The corresponding expressions for (E, Pop, and Q~ are given by (26), (28), 
and (29), respectively. 

Away from equilibrium ( 2 r  and for N > 2 ,  the case 6 = 0  has 
vanishing probability. Compare (A2). The same is true if K becomes zero 
at the turning point. The solution of both these cases can be found using 
the assumption that Ft2 is constant. However, we will not give the results 
of these special cases, and turn now to the general case 6 > 0, K >  0. 

We introduce the new variables u, v, w, 

- - 1  ^ t 1 t 
U = i J ~ X I 2 S 1 2 ,  V = ~ P 1 2 ,  W = 26Km (B4) 

into (B1)-(B3) and find 

fi = gF~2[1 - (u2/w)] (B5) 

13 = c5F~2[ 1 - (uv/w)] (B6) 

v~ = 3F, z[4v/6] (BY) 

F12 >)> 0 is not yet specified. In the above variables, 

~E = ~F12u/w (B8) 

See (26). 
Assuming that F12 is constant is not useful here, but a more com- 

plicated assumption does make the system tractable: 

F12 = Cw sgn(u)/( u6 ) (B9) 

Thus, F12 varies during the collision. C is an arbitrary, large, positive con- 
stant. Because in the general case of 6 > 0 and w > 0, F12 >> 0. Thus, C ~ 
yields again the hard-sphere limit. If u changes sign during the collision, F12 
would approach ~ at this point even for finite C. We will see later that this 
causes no difficulty. The friction coefficient becomes 

(e  = C sgn(u) (BIO) 
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Defining z =- Ct, (BS)-(B7) become 

du/dz = sgn(u) [w - u2]/u ( B l l )  

dv/dz = sgn(u) [w - uv]/u (B12) 

dw/dz = sgn(u) [4wv]/(6u) (B13) 

Subtracting (B11) from (B12) yields 

d(v - u)/& = - sgn (u )  Iv - u] (B14) 

This can be solved, with the result: 

v(z)  - u (z )  = (~ - ~) ex (z )  

e x p ( - z ) ,  fi>~0 
( m s )  

ex(z) --- exp(z), 0 ~> u 

exp(2z* - z), u > 0 > fi 

From the definitions of u and w it follows that w > u 2. Therefore, du/dz > 0 
during the collision; see (Bl l ) .  Thus, u > h  for z > 0 .  The quantity z* is 
defined by u (v* )=0 ,  i.e., when u changes sign (which need not happen). 
Since ex(z) determines the time behavior of ( v -  u), we define a function 
g( z ) via 

u(z) =- g(z) ex(z) (B16) 

It follows that 

= ~, sgn(g) = sgn(u), du/dz = [dg/& - sgn(g) g ]  ex(z) (B17) 

Inserting (B15) yields 

v = (g + 6 - fi) ex(r) (B18) 

On the other hand, from (B l l )  and (B17) it follows that 

w = sgn(g) g(dg/dz) ex2(r) (B19) 

Thus, we have expressed u, v, and w in terms of a single unknown function 
g. Here (du/dz)> 0 means (dg/dz)> 0; see (B17). Thus, g is strictly increas- 
ing with r. The relation g(z*)=0  defines z*. Generally, w is nonnegative, 
due to (B19). Because w is proport ional  to K >  0, w cannot vanish, even for 
g ~ 0. This means that at z--* z*, I gl (dg/dz) remains finite and nonzero. 
That  (dg/dz)~  oe when T-*z*  we can also see from (Bl l ) .  

Utilizing (B13) yields the desired differential equation for g: 

[g(d2g/dz 2) - (dg/dz) 2 ] 6 sgn(g) = 2(dg/dz)[g(6 + 2) g + 2(3 - fi)] (B20) 
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Using the transformation p - dg/dr, one can solve the resulting first-order 
differential equation in p (as function of g). Reinserting p = dg/dr yields 

g dg/(ag z + bg + c) = sgn(g) dr 
(B21) 

a=-1+2/6 ,  b=- (4 /6 ) (6 -~) ,  c=_g:-a~2-b(~  

The denominator is nonvanishing for any g if 

A = 4 a c - b 2 = 4 [ 1  + (2/6)3 ~ - 4 [ f i +  (2/6) 6] 2 > 0  (B22) 

From the definition of u, v, and w it follows that A is positive if 6 >0.  
Equation (B21) can be solved for z as a function of g: 

~a~,2q-b~+c] ~/(2a) ( b t A1/2(g-~') ) (B23) 
ex(r) = L a ~  b ~ c  j exp ~ t an -  2a(g~) + b(g + ~) + 2c 

Combining (B19) and (B21 yields the simple relations 

w = (ag 2 + bg + c) exZ(z), ~ = a~ 2 + b~ + c (B24) 

The end of the collision is given by the condition that the kinetic energy is 
the same as at the same as at the beginning of the collision, i.e., We = V~. 
Thus, 

ex(%) = [v~/(ag~ + bg e + c)] ,/z (B25) 

Inserting this result in (B23) yields an equation for ge: 

(1 -a )A1 /21nag2  + b g e + c = 2 b t a n  -1 A1/2(ge--g) (B26) 
r 2age ~ + b( ge + ~ ) + 2 c  

This equation has a unique solution for g~ > ~, which has to be determined 
numerically. This may be compared with the general isokinetic case, where 
a formally similar but simpler equation, (A9), gave re. 

We may evaluate % using (B25) and the solution of (B26). It is 
possible, however, to express all quantities in terms of ge" For u, v, w, see 
Eqs. (B16), (B18), and (B24), respectively, inserting (B25) for ex(r). 
Bearing in mind that fie = C sgn(u), Eq. (B10), we obtain for the momenta 
at the end of collision 

Pi(ge) = e x [ r ( g e ) ]  [Pi q- ~q2Ni(ge - e,6)/~5] (B27) 

I-cf. (19)]. Furthermore, the collisional integral of the friction coefficient is 
given by 

fo ~ E d t = - I n e x ( % ) = l l n [ ( a g 2 + b g e + C ) / ~ J  (B28) 
oll 
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The corresponding pressure and heat flux contributions are evaluated 
easily numerically: 

~conP~V dt=a~,12~,126-1t~eex['c(g)] dg (B29) 

fc rnQ=Vdt  a~=,12(62fcx2)-l fg :~ = e x 2 [ r ( g ) ]  g dg (B30) 
oll 

which completes the solution of the general case. 

APPENDIX  C 

The results of the computer experiments are gathered in 
Tables III-VIII. 

Table III. Results of Nonequilibrium Molecular Dynamics for Hard Spheres: 
N = 4 ,  V / V o = 1 . 2 5  ~ 

)1/2 102t-str ZE Qx, E KE/k tcstr/k (Z K - 1)/(Z e -- 1) ~K~~ 

0.0 1.242(3) 14.36(0) - -  - -  - -  1.126 - -  
0.1 1.242(2) 14,36(0) - -  - -  - -  1,124 - -  
0.2 1.243(3) 14,36(0)0.17(6) 4.29(144) 0.24(15) 1,126 1.379 
0.3 1.243(3) 14.36(0) 0.60(7) 6.65(79) 0.56(8) 1,125 1.461 
0.4 1,244(2) 14.37(0) 0.77(9) 4.80(58) 0.38(5) 1,125 1.484 
0.5 1,242(4) 14.37(0) 1.25(7) 5.01(28) 0.38(2) 1.126 1.408 
0.6 1,242(4) 14.37(1) 1,89(8) 5.25(23) 0.38(2) 1.124 1.396 
0.7 1.236(3) 14.39(1) 2.81(11) 5.73(23) 0.43(1) 1,121 1.398 
0.8 1,233(4) 14.40(1) 3.28(16) 5,13(25) 0.38(2) 1.122 1.406 
0.9 1.234(6) 14.40(2)4.14(14) 5,12(17) 0.37(1) 1.120 1.392 
1.0 1.228(3) 14.41(2) 5.10(14) 5.10(14) 0,37(1) 1.117 1,375 
1.1 1.229(4) 14.45(1) 5.71(10) 4.72(12) 0,33(1) 1.1t7 1.363 
1.2 1.221(5) 14.43(2) 6.67(21) 4.63(14) 0.32(1) 1.115 1.356 
1.3 1.217(2) 14.39(2) 7.38(7) 4.37(4) 0.29(1) 1.1t2 1.344 
1.4 1.231(5) 14.32(2) 8.32(13) 4.25(7) 0.27(1) 1.112 1,334 
t.5 1.226(5) 14.29(4) 8.73(13) 3.88(6) 0.24(1) 1.110 1,321 
1.6 1,245(5) 14.18(2) 9.53(7) 3.72(3) 0.22(0) 1.110 1.319 
1.7 1.243(7) 14.13(3) 10.16(14) 3.52(5) 0.20(0) 1.107 1.307 
1.8 1.263(6) 13.88(3)10.53(8) 3.25(2) 0.18(0) 1.105 1,295 
1.9 1.265(4) 13.81(4)10.87(9) 3.01(2) 0.15(0) 1.103 1.280 
2.0 1.287(3) 13.66(4)11.30(6) 2.83(1) 0.14(0) 1.103 1.274 

a The calculated quantities are explained in Table II. Numbers in parentheses denote the 
uncertainty of the last digit(s). 



Table IV. As Table III, Except for N = 3 2 ,  V[Vo=1.25 

/~1/2 102fstr ZE Ox,E tcE/k gstr/k ( Z  K -- 1 ) / (Z  E --  1 ) K~II/K~ ~ 

0.0 0.137(0) 14.67(1) - -  
0.1 0.137(0) 14.68(1) - -  
0.2 0.137(0) 14.67(1) 0.9(1) 
0.3 0.137(0) 14.68(1) 1.6(1) 
0.4 0.138(1) 14.65(1) 2.7(1) 
0.5 0.137(0) 14.66(1) 4.0(2) 
0.6 0.138(1) 14.63(1) 6.1(2) 
0.7 0.139(1) 14.56(2) 8.4(3) 
0.8 0.139(1) 14.56(3) 10.5(3) 
0.9 0.141(1) 14.51(3) 14.3(5) 
1.0 0.142(1) 14.44(5) 18.2(5) 
1.1 0.144(1) 14.47(5) 23.3(5) 
1.2 0.149(1) 14.31(5) 28.2(6) 
1.3 0.155(1) 14.13(7) 33.3(7) 
1.4 0.165(1) 13.74(7) 38.7(11) 
1.5 0.174(I) 13.53(4) 43.1(7) 
1.6 0.182(2) 13.25(10) 46.0(10) 
1.7 0.204(I) 12.79(8) 53.3(9) 
1.8 0.212(3) 12.41(10) 54.0(9) 
1.9 0.230(3) 12.13(7) 58.7(7) 
2.0 0.256(3) 11.72(6) 62.3(6) 

- -  - -  1 . 0 1 1  - -  

- -  - -  1 . 0 1 1  - -  

21,5(32) 1.34(25) 1.011 1.033 
17.6(15) 1.11(12) 1.011 1.034 
17.0(7) 1.10(5) 1.011 1.035 
15.9(7) 1.04(5) 1.011 1.037 
16.8(6) 1,10(4) 1.011 1.039 
17.2(5) 1.15(5) 1.012 1.041 
16.5(5) 1.11(4) 1.012 1.040 
17.6(7) 1.14(15) 1.013 1.048 
18.2(5) 1.32(5) 1.014 1.054 
19.2(4) 1.43(4) 1.015 1.059 
19.6(4) 1.51(4) 1.017 1.066 
19.7(4) 1.57(5) 1.019 1.077 
19.7(6) 1.63(7) 1.022 1.086 
19.2(3) 1.61(3) 1.024 1.091 
18.0(4) 1.54(3) 1.025 1.091 
18.4(3) 1.59(2) 1.030 1.103 
16.7(3) 1.47(3) 1.030 1.101 
16.3(2) 1.46(1) 1.032 1.105 
15.6(2) 1.42(1) 1.035 1.109 

T a b l e  V .  A s  T a b l e  III, E x c e p t  f o r  N = 4 ,  V/Vo=I.80 

21/2 1027~r Z E  Qx, e h'E/k Kstr/k ( Z ~  - 1 ) / ( Z e  - 1 ) KKcon/x Ecoll 

0.0 3.12(1) 6.30(1) - -  - -  - -  1.125 - -  
0.1 3.12(1) 6.32(1) - -  - -  - -  1.124 - -  
0.2 3.13(l) 6.31(1) 0.06(2) 1.53(48) 0.32(8) 1.125 1.480 
0.3 3.12(1) 6.31(1) 0.19(2) 2.15(25) 0.34(4) 1.124 1.398 
0.4 3.13(1) 6.32(1) 0.36(3) 2.26(19) 0.37(3) 1.126 1.432 
0.5 3.13(2) 6.31(1) 0.62(3) 2.48(11) 0.41(2) 1.123 1.409 
0.6 3.13(2) 6.31(1) 0.80(4) 2.22(10) 0.34(2) 1.126 1.388 
0.7 3.11(1) 6.33(1) 1.10(5) 2.24(9) 0.36(1) 1.124 1.391 
0.8 3.10(1) 6.34(2 ) 1.32(4) 2.06(6) 0.32(1) 1.122 1.379 
0.9 3.12(1) 6.34(1) 1.65(5) 2.03(6) 0.32(1) 1.123 1.384 
1.0 3.11(1) 6.36(2) 1.92(3)  1 .92(3)  0.30(1) 1.121 1.375 
1.1 3.12(2) 6.36(3) 2.33(4) 1.93(3) 0.30(i ) 1.122 1.379 
1.2 3.13(2) 6.34(2) 2.63(2) 1.83(1) 0.28(0) 1.121 1.369 
1.3 3.14(2) 6.35(1) 2.98(4) 1.76(2) 0.27(0) 1.122 1.370 
1.4 3.19(1) 6.29(2) 3.22(3) 1 .64(2)  0.25(0) 1.121 1.358 
1.5 3.16(2) 6.35(3) 3.57(5) 1.59(2) 0.23(0) 1.123 1.360 
1.6 3.21(2) 6.28(5) 3.76(5) 1.47(2) 0.21(0) 1.124 1.355 
1,7 3.27(2) 6.20(4) 3.98(5) 1.38(2) 0.20(0) 1.125 1.354 
1.8 3.32(2) 6.18(4) 4.25(4) 1 .31(1)  0.19(0) 1.129 1.356 
1.9 3.36(2) 6.18(4) 4.38(3) 1.21(1) 0.17(0) 1.132 1.358 
2.0 3.32(3) 6.31(6) 4.77(7) 1.19(2) 0.16(0) 1.138 1.369 

822/48/3-4-34 



Table Vl. As Table III, Except for  N = 32, VIV o = 1.80 

,~1/2 102[str ZE Ox,E xE/k Kstr/k (ZK-- 1)/(Ze-- 1) K~:~ ~ 

0.0 0,285(1) 7.58(2) - -  - -  - -  1.011 - -  
0.1 0.284(1) 7.57(3) - -  - -  - -  1,011 - -  
0.2 0,282(1) 7.62(3) 0,3(1) 7.3(13) 0.83(21) 1.011 1.039 
0.3 0.282(1) 7.62(3) 0.6(0) 6.2(3) 0.84(6) 1,011 1.038 
0.4 0.285(1) 7.58(3) 1.1(1) 7.0(4) 0.89(7) 1.011 1,038 
0.5 0,283(2) 7.62(5) 1.7(1) 6.8(3) 0.78(8) 1.011 1.037 
0.6 0.285(2) 7.64(3) 2.6(1) 7.3(3) 0.87(5) 1.012 1,043 
0.7 0.288(3) 7.59(6) 3.6(2) 7.4(4) 0.89(3) 1.012 1,042 
0.8 0.294(2) 7.50(5) 5.3(2) 8.3(4) 1.10(6) 1,013 1,055 
0.9 0.308(2) 7.29(6) 6.7(3) 8.3(4) 1.22(7) 1.014 1.062 
1.0 0.332(3) 7.13(5) 9.8(3) 9.8(3) 1.48(5) 1.019 1.078 
1.1 0.354(2) 7.05(7) 12.9(4) 10.7(3) 1.64(4) 1.022 1,087 
1.2 0,382(6) 6.86(7) 15.1(5) 10.5(3) 1.73(10) 1.027 1.104 
1.3 0.428(4) 6.68(5) 18.5(6) 10.9(4) 1.83(5) 1.032 1.118 
1.4 0.458(6) 6.54(7) 20.2(3) 10.3(2) 1.77(5) 1.035 1.121 
1.5 0.520(8) 6.37(8) 23.6(5) 10.5(2) 1.81(3) 1.041 1.136 
1.6 0.565(7) 6.21(8) 24.5(5) 9.6(2) 1.73(4) 1.044 1.135 
1.7 0.611(7) 5.99(6) 25.6(4) 8.9(1) 1.62(1) 1.045 1.134 
1.8 0.677(7) 5.80(8) 26.9(5) 8.3(2) 1.56(2) 1.049 1.141 
1.9 0.710(11) 5.70(6) 27.4(5) 7.6(1) 1.44(2) 1.049 1.137 
2.0 0.734(12) 5.73(9) 29.2(3) 7.3(1) 1.37(2) 1.050 1.136 

Table VII .  As Table Ill, Except for  N = 4 ,  V/Vo=3.00 

K K /K E 21/2 102tstr ZE Qx.E KE/k rcstr/k ( Z  K -- 1 ) / ( Z  E -  1) r coil 

0.0 5.88(3) 3.82(1) - -  - -  - -  1.125 - -  
0.1 5.91(3) 3.80(2) - -  - -  - -  1,124 - -  
0.2 5.86(3) 3.83(1) 0,05(1) 1.33(28) 0.29(7) 1.125 1.378 
0.3 5.87(3) 3.82(2) 0.11(1) 1.26(14) 0.27(4) 1.126 t.355 
0.4 5.92(3) 3.81(2) 0.19(1) 1.21(6) 0.29(3) 1.125 !.398 
0.5 5.88(3) 3.83(2) 0.30(1) 1.20(5) 0.30(2) 1.124 1.366 
0.6 5.85(6) 3.82(3) 0.42(1) 1.15(4) 0.28(1) 1.123 1.362 
0.7 5.91(6) 3.82(3) 0.56(2) 1.13(4) 0.28(1) 1.125 1.374 
0.8 6.10(4) 3.73(2) 0.70(3) 1.10(4) 0.29(1) 1.122 1.342 
0.9 6.08(5) 3.76(2) 0.81(2) 1.00(2) 0.26(1) 1.125 1,359 
1.0 6.09(3) 3.74(1) 0.91(2) 0.91(2) 0.23(0) 1,124 1.340 
1.1 6.19(6) 3.71(2) 1..06(2) 0.87(1) 0.22(1) 1,122 1.327 
1.2 6.24(3) 3.69(2) 1.16(1) 0.80(1) 0.22(1) 1,123 1.330 
1.3 6.33(4) 3.65(2) 1.28(1) 0.76(1) 0.21(0) 1.124 1.334 
1.4 6.61(4) 3.53(2) 1.33(2) 0.68(1) 0.20(0) 1.122 1.334 
1.5 6.69(3) 3.52(2) 1.40(1) 0.62(1) 0.19(0) 1.123 1.330 
1.6 6.94(3) 3.42(2) 1.47(2) 0.58(1) 0.18(0) 1.121 1.325 
1.7 6.78(22) 3.38(2) 1.55(2) 0.54(1) 0.17(0) 1,120 1.311 
1.8 7.27(6) 3.32(2) 1.61(2) 0.50(1) 0.16(0) 1.113 1.308 
1.9 7.47(4) 3.23(2) 1.63(2) 0.45(1) 0.15(0) 1.115 1.296 
2.0 7.71(11) 3.17(4) 1.67(2) 0,42(1) 0,15(0) 1.116 1.295 
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Table VIII. The Results of Tables Ill-VII Extrapolated t o  E q u i l i b r i u m  ~ 

N V/Vo 10~? t~* Z* ~*/k  tcstr'/k 

4 1.25 1.243(0) 14.362(2) 5.18(18) 0.39(2) 
32 1.25 0.137(0) 14.666(5) 16.74(36) 1.09(2) 
4 1.80 3.124(2) 6.312(2) 2.30(8) 0.37(2) 

32 1.80 0.284(1) 7.603(10) 6.79(21) 0.85(2) 
4 3.00 5.885(9) 3.820(5) 1.18(2) 0.28(0) 

Indicated by an asterisk. Numbers in parentheses denote the uncertainty of the last digit(s). 

A P P E N D I X  D 

In this Appendix, we derive Eq. (33). Since Z st~ =P~t~V/NkT= 1 for 
hard spheres (see Section 3.l) Eq. (33) can be written as 

Pc~176176 1 - D ( N -  1), D ( N -  1)/> 1 (D1) E K - -  

valid for vanishing driving force, 2 = O. In both isoenergetic and isokinetic 
cases, P~176 may be evaluated as a time average, 

pc~ 12fcollf~Pct~(t)]Vdt ( 9 2 )  

Compare with Eq. (11). The first sum goes over all collisions observed 
during the large time interval s. According to (28), the integrand may be 
written as 

P=,(t) V=F~2cr (D3) 
9~ 

F~2=F is assumed to be constant. See (A1) for the isokinetic case. The 
same assumption applies in the isoenergetic case if 2 = 0. This special case 
was not treated in Appendix B. Then it follows that 

fc ~ P~=(t) Vdt  = (D4) f i t  e 
oll :t 

for both isoenergetic and isokinetic cases, where z e is defined in parallel to 
Eq. (A3). Since 2 = 0, r e can be calculated analytically; the result is 

r~,e = --P~e (D5) 

z,, K = (rnK) 1/2 In{ [(4mK) 1/2 - fi'12]/[(4mK) ~/2 + P'12] } (D6) 
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r~.K comes from Eq. (A9), 2 = 0 inducing 

(da = O) ~ I ( ~ )  = (D7) 

Combining Eqs. (D4}-(D6) yields the integral occurring in (D2) for both 
isoenergetic and isokinetic cases. 

For calculating P~~ and P~~ we use the ensemble average instead 
of the time average. The probability of a collision is proportional to 
(-/012) >0.  Furthermore, the system is isotropic for 2 = 0. The momenta 
are restricted by the fixed center of mass and the fixed streaming kinetic 
energy K ~t~, 

~. p~,,. = 0, ~ = x ,  y,... (DS) 
i 

p~, - 2mlC , 1 <~ i <~ N. (D9) 
ct i 

Inserting (DS) into (D9) yields 

= 2 i n k  ~t~, l <~i<~N-1  (D10) 

Thus, we have ( N -  1 ) D variables p~ in momentum space with one restric- 
tion forcing the points to lie on an ellipsoid. Transformation to ( N -  1)D 
variables wj is always possible so that the allowed points lie on the surface 
of a unit hypersphere: 

~ w ~ = l ,  I ~ j < ~ ( N - 1 ) D  
J 

J 

0 <  w I = (-~'12)/(4mK~'~) ~/2 <~ 1 

( D I I )  

(D12) 

Thus, the probability of a collision is proportional to w~. The ensemble 
average of a function f ( w  ~ } becomes 

f = ~ f ( w , )  W 1 dw 1 I " "  f dw2" '"  dW(N-I)D 

I~ wl dWl ~...I dw2...dw~,,_,D ' 
( N -  1)D>~2 (DI3) 

with the restriction (C12). Carrying out the integrals over w2...W(~v_~)o 
and replacing w~ by w gives 

~ f ( w )  w(1 - w 2) w , -  ~>~- 33/2 dw 
( f )  = f~ ,,,tl ,,,2~Wv-~)e-3]/2 A,,, (DI4)  
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In order to obtain (D1), we have to specify f(w):  

p~oll V/ p~ll V = <'~ e,E( W ) > / < T e,K( W ) > 

re,e = 2(rn/~tr) 1/2 w 

~,K= (mK) m ln[(1 + w)/(1 - w)] 

(D15) 

(DI6)  

/C tr, the isoenergetic streaming energy, is equal to the isokinetic K. It 
follows that 

p~oll V ~ dw w2(1 - w 2) [(N- 1)D - -  3 ]/2 

Wx~ ~ dw w(1 - w2) (N-l)z~-3 ln[(1 + w)/(1 - w)] 
(D17) 

Evaluation of this ratio yields (D1) for ( N -  1) D ~> 2. If N =  2 and D = 1, 
j =  1 and wl = 1 are fixed [see (Dl l ) ,  (D12)]. Thus, no average has to be 
taken in (D15). Due to w = wl = 1, the numerator is finite, the denominator 
infinite, in accordance with (D1) for the case (n - 1) D = 1. 
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